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This paper deals with the shape dependence of the dielectric susceptibility 
(equivalently defined, in a canonical ensemble, by the mean square fluctuation 
of the electric polarization or by the second moment of the charge-charge 
correlation function) of classical Coulomb systems. The concept of partial 
second moment is introduced with the aim of analyzing the contributions to the 
total susceptibility of pairs of particles of increasing separation. For a disk- 
shaped one-component plasma with coupling parameter ~ = 2  it is shown, 
numerically and algebraically for small and large systems, that (1) the 
correlation function of two particles close to the edge of the disk decays as the 
inverse of the square of their distance, and (2) the susceptibility is made up of a 
bulk contribution, which saturates rapidly toward the Stillinger-Lovett value, 
and of a surface contribution, which varies on the scale of the disk diameter and 
is described by a new law called the "arc sine" law. It is also shown that elec- 
trostatics and statistical mechanics with shape-dependent thermodynamic limits 
are consistent for the same model in a strip geometry, whereas the Stillinger- 
Lovett sum rule is verified for a boundary-free geometry such as the surface of a 
sphere. Some results of extensive computer simulations of one- and two-com- 
ponent plasmas in circular and elliptic geometries are shown. Anisotropy effects 
on the susceptibilities are clearly demonstrated and the "arc sine" law for a cir- 
cular plasma is well confirmed. 

KEY WORDS: One- and two-component plasmas; dielectric susceptibility; 
partial second moment; shape-dependent effects. 

1. I N T R O D U C T I O N  

This paper is a contribution to the quantitative theory of the shape depen- 
dence of the dielectric susceptibility of classical Coulomb systems. 
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Qualitatively, the picture is that the susceptibility is made up of two con- 
tributions: one originating from the bulk of the system, where short-range 
correlations dominate, and one from the surface, where long-range 
correlations may occur in a thin surface layer. In a previous paper, ~15) 
referred to as I, it has already been noticed that, in order to ensure the con- 
sistency between the predictions of phenomenological electrostatics and 
statistical mechanics, it is essential to perform a thermodynamic limit that 
preserves the shape of the initially finite system. Direct calculation of the 
susceptibility of a two-dimensional one-component plasma (OCP) in a disk 
for a coupling parameter 7 = q2/kB T =  2 produced the value I/'~, which is 
that required by electrostatics, whereas 1/2~ is the value given by the 
second moment Stillinger-Lovett (SL) sum rule and which corresponds to 
the bulk contribution. How then does the surface contribution amount 
exactly to 1/2n in this case? This is one of the questions to which this paper 
is addressed. It is organized as follows. 

Section 2 recalls, for the different geometries considered in subsequent 
sections, the phenomenological relations between the dielectric constant of 
classical, homogeneously polarizable, isotropic Coulomb systems and their 
shape-dependent susceptibility tensor. Here this tensor is defined to relate 
the electric polarization density of the system confined in a certain domain 
and surrounded by the vacuum to the external field. Next, and in the case 
of spherical geometry, comments are made on the connection between the 
above relation, which is model independent, and the Clausius-Mossotti 
relation, which is model dependent and is of approximate validity. Then a 
heuristic argument is given to indicate that an OCP of ellipsoidal geometry 
has exactly the anisotropic susceptibility tensor required by the general 
relations in their limit of infinite dielectric constant. Lastly, it is recalled 
that, in a canonical ensemble, two equivalent expressions for the suscep- 
tibility tensor are available: one expression is given in terms of polarization 
fluctuations, hereafter called the PF formula, and the other expression is 
given in terms of the second moment tensor of the truncated charge-charge 
correlation functions, hereafter called for simplicity the second moment or 
SM formula. In I the PF formula only was used and the 1/~z result was 
obtained [I, Eq. (16)], but its splitting into 1/27c+ l/2rc could not be 
understood. It is for this reason that the SM formula is used here. 
However, since it involves the product of two Cartesian coordinates, which 
constitute unbounded observables, the convergence of their expectation 
values has to be investigated with great care. For this purpose the idea of 
the partial second moment is introduced. 

Section 3 deals entirely with the OCP in a disk for 7 = 2. In this 
geometry the partial second moment is isotropic and is a function of a dis- 
tance that varies from zero to the disk diameter. It is shown explicitly that, 
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for a model with a background possessing an adequate excess charge, the 
pair correlation function decays as the inverse square of the distance 
between two points belonging to the surface layer, whereas it is Gaussian if 
the two points are in the interior of the disk, and that the partial second 
moment contains, for large systems, two additive contributions: a bulk and 
a surface contribution. It is found that within a very short range equal to 
the ion disk radius, the bulk contribution saturates toward 1/2n, which is 
the expected SL value, whereas the surface contribution follows a new, 
extremely long-range "arc sine" law and reaches the value 1/2n at the disk 
diameter. Then the splitting of l/n= 1/2n+ 1/2n is explained in quan- 
titative terms. 

Section 4 presents exact numerical results for the OCP on a disk for 
~,= 2 and also some results from Monte Carlo (MC) simulations for an 
OCP at 7 = 1.5, 2, and 4 and for a two-component plasma (TCP) at 7 = 2. 
The "arc sine" law seems to be verified in all cases, which means that long- 
range correlation near a surface may be a general property of Coulomb 
systems. It is worth mentioning here that the theory developed in Section 3 
has been greatly inspired by the Figs. la, lb, and 4 in particular. 

Section 5 deals with the problem of polarization fluctuations in 
anisotropic geometries. The MC simulations of the OCP and of a TCP for 
7 = 2 in three different elliptical domains are reported. The depolarization 
tensor of an ellipse is computed explicitly. Although the measured values of 
the susceptibility of the rather small systems simulated are quite smaller 
than the values predicted by electrostatics, their longitudinal to transverse 
ratios are in good agreement with the theoretical values. Expected for the 
OCP on the basis of the argument presented in Section 2, these results are 
less trivial for a TCP, since this system learns the shape of its domain only 
through the collisions of its particles with the walls. 

Section 6 is a sequel to I: it examines the susceptibility given by the PF 
formula for the 2D OCP in a strip geometry for 7 = 2. As announced in I, it 
is proved here that for both the transverse and parallel susceptibilities, the 
predictions of classical electrostatics and the results of statistical mechanics 
are rigorously identical in a shape-dependent thermodynamic limit. 
Furthermore, the dependence of the longitudinal susceptibility as a 
function of the distance between the pair of parallel lines defining the strip 
geometry is also given explicitly. Some algebraic details are .given in the 
Appendix. 

Section 7 deals with the case of the 2D OCP for 7 -- 2 and confined to 
the surface of a three-dimensional sphere. Using the SM formula, the sus- 
ceptibility is given explicitly as a function of the number of particles. The 
saturation to the electrostatic value is reached with a first-order correction 
O(N 1). The main result of this section is that for this unphysical but 
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boundary-free system, the SL sum rule is recovered in the thermodynamic 
limit. 

2. DIELECTRIC CONSTANT AND SUSCEPTIBILITIES 

In I we called the dielectric susceptibility tensor )~A the tensor that 
relates the electric polarization density ~ of a Coulomb system in a domain 
A surrounded by vacuum to the applied field Eo. This tensor derives from 
the linear response theory of statistical mechanics, since the coupling of the 
system with the external field is - P . E o ,  where P is the instantaneous 
polarization. In phenomenological electrostatics (1'2) the dielectric suscep- 
tibility tensor Xe is defined as the tensor that relates the electric polarization 
density N to the macroscopic or Maxwell field E acting in the system. 
While )~A is shape-dependent, Ze is shape-independent. For homogeneous 
systems the tensor Xe reduces to a scalar quantity, whereas •A, althought 
generally diagonal, may be anisotropic. 

In this section we recall the relations between the dielectric tensor e, 
which relates the displacement field D to the field E and reduces to a scalar 
for isotropic systems, and the susceptibilities )~e and 7~A of isotropic classical 
Coulomb systems for different shapes of interest, we discuss in some detail 
the Clausius-Mossotti relation, (3 5) and we give a heuristic argument con- 
cerning the fact that an OCP of appropriate shape satisfies the above 
relations in the plasma limit e = oe. 

We consider, in two or three dimensions (v=2 ,  3), a polarizable 
system of shape such that a uniform polarization produces a uniform 
depolarization field El;  this is the case for elliptic (v = 2) and ellipsoidal 
(v = 3) domains, as proved in Refs. 6 and 7. 

According to the above definitions and assumptions, we have the 
following equations: 

= )~A Eo (2.1) 

= Ze E (2.2) 

D = eE (2.3) 

D =  E + SvN (2.4) 

E = Eo + El (2.5) 

El = -s~ T A ~ (2.6) 

where s~ = 2 ~ In (v = 2, 3) and T A is the depolarization tensor. With x a 
vector in R v, txl its norm, with the Coulomb potential C~(x)= - l n  [xL, 
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and [x1-1 
defined by (Ref. 7, p. 106) 

respectively for v = 2 and 3, the components T~ of this tensor are 

.v a2Cv(Y) 
T~ = -(s~) ' ~  a y~piOy  j JA 

(2.7) 

or, for x c A, by 

02 fA r~(x) = -(s~) ' - -  cl~y C d x - y )  (2.8) 
0x~ 0xj 

since the fundamental property of T](x) for elliptic or ellipsoidal domains 
is to be independent of x (Ref. 7, pp. 106-109). Analytic and numerical 
analysis of the components of T~ for a general ellipsoid can be found in 
Refs. 8 and 9. In Section 5 the components T~ for an ellipse are derived. 

From Eqs. (2.2)-(2.4) we have the well-known relation 

e=~  +s~z~ (2.9) 

where ~ is the unit tensor. 
From Eqs. (2.2), (2.5), (2.6), and (2.1) we find the general and 

apparently new relation between Z~ and XA, 

X~ = ZA(~ --S~TAT.A) -~ (2.10) 

We notice that for the strip (v=2)  or slab (v=3)  geometry ZA 
possesses two types of components, Z• and )%, corresponding to Eo per- 
pendicular or parallel to the strip or slab and that in the latter case Zll = Ze, 
since E =  Eo. From Eqs. (2.9) and (2.10) we find the relation between e and 
XA, 

(2.11) 

At this point we wish to make a comment on the particular case where 
A is a v-dimensional sphere (designated below by the symbol Q)). Here TA 
is isotropic and we have T ~ = v  1. For v=3 ,  Eq. (2.11) becomes 

= (1 - 4~Z(D/3)-1(1 + 8~;~Q/3) (2.12) 

This relation is manifestly the so-called Clausius-Mossotti relation 
between ~ and the atomic polarizability c~ times the particle number density 
p.(1-5) This coincidence can be explained by the fact that for isotropic 
media and for a spherical geometry the external field E0 equals the local 
field Elo c if the field produced by a mesoscopic, spherically symmetric 
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environment (the Lorentz cavity) of the atom singled out is zero or can be 
neglected. The general relations are indeed 

= c~pElo~ (2.13) 

and, following the notation of Ref. 1, p. 455, 

Elor = Eo + E, + E2 + E3 (2.14) 

where E2 is the Lorentz (spherical) cavity field and E3 the field of atoms 
inside the cavity. Since E 2 - - s v T � 9  (3) we have, using Eq. (2.6) and with 
E3 = 0, 

Eloc = Eo - s~ TA~ + S v T C ) ~  (2.15) 

and for a spherical A, E~oc = Eo, since TA = T � 9  is scale-invariant and 
)~G= ~p according to Eq. (2.13). 

A good candidate to test Mossotti's approximation (E 3 = 0) is Thorn- 
son's model of matter, which consists of a classical assembly of polarizable 
atoms where the electrons are point particles immersed in a neutralizing, 
homogeneous spherical ionic background. For a monoelectronic Thomson 
atom, the bounded electron is subject to an attractive potential q2r2(2a')  ~, 
where a is the radius of the v-dimensional ionic sphere and the atomic 
polarizability is e = a ~. It can be shown by symmetry arguments (1'3'1~ that 
if the atoms are placed on a simple cubic lattice with overall spherical 
geometry, for example, and if the interactions between the Thomson atoms 
are approximated by their dipolar term, then E3 = 0. Our conclusion is that 
Eq. (2.12) is much more general than the Clausius-Mossotti relation, since 
it is model-independent and free of any approximation. 

The second comment to be made in this section concerns the plasma 
limit e ~ m  in Eq.(2.11). In this limit, the denominator of Eq. (2.11) 
vanishes and we find 

Z ~ = ( S v T A )  I (2.16) 

In contrast, we recall the Stillinger-Lovett value Z~L = (sv) '~ 
We wish now to present a heuristic argument for the fact that an OCP 

of appropriate shape has a susceptibility that satisfies Eq. (2.16) rather that 
the Stillinger-Lovett value. 

The potential energy of an OCP consists of three parts: the particle- 
particle interaction Vpp, the particle-background interaction Vpb, and the 
self-energy of the background Vbb. 
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For Vpb we have by definition 

N 

Vpb = ~ (--) q2p~ f d~y Cv(xn - y )  (2.17) 
t / = l  ~A 

where Pb is the background density and N is the number of particles. 
The point is that for elliptic or ellipsoidal domains, in using the iden- 

tity 

d y Cv(x-  y)= d y Cv(y) + dx~ dX~ ~x; 2 
i = 1  

+ z ;o 1 <i<j<v dxi ~x; ~xj d~y C~(x '-y)  

• fo 
x t 

" _SvTA(X )] = dry Cv(y) + dx~ dx; [ i~ , 
i = 1  

+ y, dx; dx~ [-s~r?;(x')] (2.18) 
l<~i<j<~v  0 

and in invoking the fundamental property [Eq. (2.8)] of the depolarization 
tensor, Eq. (2.17) becomes, as long as xn ~ A, Vn, 

fA N ~ I Vpb= --Nq2pb d~y C~(y)+ Z ~q2pbs~T~x,.ix~j (2.19) 
n = l i ,  j = l  

The second term on the rhs of Eq. (2.19) is rewritten as follows: 

n = I i , j=  1 -~ q2pbS" TAX"iX~'J 
1 N 

1 /j=x ~q P~ 

• 
2-N ,=, i , j = l  

X [ ( X n ,  i - -  Xn,  i ) ( X n ,  j - -  X n , , j  ) ~- X n , i X n , , j  ~- X . , j X n ,  i ] (2.20) 

It contains a translation-invariant part, which can be added to Vpp, and a 
non-translational-invariant part, which can be identified as a harmonic 
coupling of the center of mass X = N  l z,N=IX . with the background. 
Introducing the plasma frequency cop = (s~q2pb/m) ~/~, where m is the mass 
of the particles, this interaction becomes 

~-~ N 2 
V~mb= , ~ ~mcopT~ (2.21) 

i , j =  1 
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In terms of the center-of-mass coordinates, the components of the suscep- 
tibility tensor become, with p = N/IAI, 

[A[ ]A] 

= flq2pN(XiXj ) = fl me@ p__ N(X~Xj) (2.22) 
Sv Pb 

and since X decouples from the other degrees of freedom, the canonical 
average of Eq. (2.22) is asymptotically, with p = Pb in the thermodynamic 
limit, 

Z~ = s~- I(TA 1)U (2.23) 

These are precisely the values required [Eq. (2.16)] by electrostatics. There 
is no shape for which the second-moment Stillinger-Lovett sum rule for 
plasmas is recovered. It is the purpose of Section 3 to explain this puzzling 
fact. 

We end this section with a brief review of two equivalent expressions 
for the susceptibility: the polarization fluctuations (PF) and second 
moment (SM) formulas. 

The PF formula derives from the linear response theory. Following the 
notations of I, we have the relations 

•ll,A =1--~ ( ( p 2 )  _ ( e  I 52) 

13 -tAIf~ 

(2.24) 

d~x fA dry x~ ylSA(X, y) (2.25) 

dVx~yxly l  q~p~,A(x) 3 ( x - y ) + ~  r q~q~P~,A( x, Y) 

(2.26) 

where P1 is the x 1 component of the instantaneous polarization [I, 
Eq. (5)], SA(X, y) is the truncated charge-charge correlation function [I, 
Eq. (1)], p~,A(X), p~.A(X,y), and p~rp.A(X, y) are the one-, two-, and trun- 
cated two-particle correlation functions, and e and fl label the species of the 
system considered. 

The SM formula is obtained from Eq. (2.25) by writing 

1 1 
Xl yx = - 5  (yl - x l )  2 + 2  (y~ + x~) 
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Noticing that the contributions of the last two terms cancel since 

f A dX SA(x, Y)= f A dy SA(x, y)=O 

for both neutral and charged systems, we have 

1 ~ ~q~q~iAWxd~y(y  I 2 T - -x~)  p~.A(x,y) (2.27) XlJ,A 2 [A[ ~,B 

The SM formula is an example of the expectation value of an obser- 
vable which is (i) translationally invariant and (ii) unbounded. 

The first property suggests introducing the relative coordinates 
r = y - x  and defining the pair correlation function 

17_:7, , ~ d~ x v P~,A(r) = p~,A(X, X + r) (2.28) 
IAF JD a(r) 

where the domain of integration DA(r) is such that x ~ A and x + r ~ A. If 
Ar designates the domain A shifted by the vector r, then DA(r ) = A c~ At. 
For example, if A is a disk of radius R, then DA(r ) is the lunular region 
defined by the intersection of two disks having their center separated by a 
distance ]rl. With Eq. (2.28) we can write Eq. (2.27) in the form 

Xll, A~-" - - / ~ 2  q~q~ faA dvr r~P~'A(r) (2.29) 
2 

where the domain of integration O A is obtained as follows: let O, chosen as 
the origin, be any point of A, let P be any point on the boundary •A of A, 
and let Ap be the domain A shifted by the vector PO (to the origin); then 
g2 A is generated by U Ap, VP~ OA. Some examples are: if A is a square of 
side length L, then OA is a square of side length 2L; if A is an equilateral 
triangle of side length L, then g2A is a hexagon of side length L; if A = S(R) 
is a disk of radius R, then ~'~A = S(2R) is a disk of radius 2R. 

The second property of the observable r 2, namely the fact that it is 
unbounded, suggests introducing the concept of partial second moment, an 
object that should permit us to examine the contributions to the total sus- 
ceptibility of pairs of particles of increasing separation. This partial second 
moment is defined as follows: let 2 e ]0; 1] be a scaling parameter and •'QA 
be a shape similar subdomain of OA; then 

Zll,A(2) = -- ~ ~ q~q~ d~r r~a,A(r) (2.30) 
~,/~ ~2A 

For example, if A is a disk or sphere of radius R, then 2 = [r[/2R. The cen- 
tral question to which this paper is addressed can now be taken up. 
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3. THE OCP ON A DISK FOR y = 2  

For  the O C P  on a disk of radius R b the one- and two-particle 
correlat ion functions will be relabeled p l , � 9  and p2,�9 y). For  this 
isotropic model, Eqs. (2.28)-(2.30} become, respectively, 

P2"@(F) ~- (TCRb2)- 1 fD d2xlof@(x, X@F) (3.1) 
@(P[) 

!s )~11,Q) = - - ~ 7  d2rr2p2,Q)(r ) (3.2) 
(2Rb) 

1 
)~11,@(r) = -- ~ 7 fSqrl) d2r' r 'X/52'@(r ')  (3.3) 

In this geometry p2.O(x, y)  is invariant upon reflection and rotation. This 
means that p2,�9 y) is a function of Ixl, [yl, and 10], where 0 is the angle 
between y and x, or is a function of ]xl, ly], and Irl, where 

18 2=  {x12+ l y l 2 - 2  Ixr lYl cos 10l 

This proper ty  suggests determining lo2,@(r), which will be a function of ]r[, 
from an integral representation using Ixl, lyl, and ]rl as independent  
variables. Let s =  ]rt and c~, u = Ixl and ~0, and v = ]y[ and ~ be the polar 
coordinates of r, x, and y. We change the system of coordinates (~0, q, u, v) 
into (c~,s, u, v) via the system (~, 0, u, v). Noticing that  the Jacobian 
8(~0, 0)/8(c~, 0 ) =  1, we have 

d2x d2y = &o dO u du v dv 

= d~ dO u du v dv 

= 2 d~: d lO l u du v dv 

, g 101 
= 2 &~ s as ~j~s U dU v dv 

2 du dv 
=d2r/l '0~;sin 0 e  [0; ~]  

2u du v dv 
= dZr (3.4) 

[ u 2 v ~  _ �88 ~ + ~ _ s2)~ 3 v2 

The domain of integration in the (u, v) plane, called D'C)(s), is given by the 
intersection of the square v = 0, u = R b, v = Rb, u = 0 with the semiinfinite 
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strip v + u = s ,  v = u + s ,  and v = u - s .  The last three equat ions are 
solutions of sin 101 = 0 ,  i.e., 

4U2V 2 -- (U 2 q- V 2 -- S 2) = O = [2UV - ( u  2 -~ 1) 2 - $ 2 ) ]  [2uv + (u 2 + v 2 - s2)] 

= I s  2 - (v  - u )  2 ]  [ ( u  + ~ )2  - s 2 ]  

= ( s + v - u ) ( s - v + u ) ( u + v - s ) ( u + v + s )  (3.5) 

The domain  D~(s)  is the image of that  half of DG(s), the lunular  domain  
cut into two halves by the line joining the centers of the two circles S(R) 
and S~(R), for which 0 e [0; 7c]. We have the relations 

fo ; ID�9 = d2x = 2 du dv _ 2 IDa ( s ) [  
O(~') D~(,) sin 101 

s ' }  36) 

and we define the ratio 

In this new integral representat ion Eqs. (3.1) and (3.3) become,  respec- 
tively, 

2 du dv 
u s) (3.8) p2,@(S ) = (7~R2)- 1 JO@(s) sin IO(u, v, s)r P2,@( , F, 

and for s ~ ]0; 2Rb] 

7 2~ i ~ [ 2dudv 
;~l, ,Q(s)- 4 ~ 2o ds' s'3 JDQ(s')s=mn]OJ p~@(u,, v, s') (3.9) 

r u s) suited to Our  next purpose  is to establish approx imat ions  of Pz@( , v, 
analyze the behavior  of  the part ial  second moment .  Par t icular  a t tent ion 
will be paid to the s dependence of this correlat ion function when both  u 
and v are close to R = (N/rcpb) 1/2, where N is the number  of particles. This 
purpose  has been achieved for 7 = 2  in the case where the incomplete  
g a m m a  functions 7 ( / +  1, M)  that  enter in the definition of Pa,C)r [I,  
Eq. (12)]  are app rox ima ted  by their upper  bound  7 ( /+  1, o r ) =  l!. This is a 
very good  approx ima t ion  for the impor tan t  values of l, which are close to 
N if there is a positive excess background  charge S(N) such that  S(N)/ 
N1/2~ oo as N - *  0% while S(N)/N-*O as N--* oo in order  to give a mean-  

822/46/3-4-12 
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ing to the thermodynamic limit of the susceptibility x(N, M) given by I, 
Eq. (12). For example, an excess charge S(N)= N 3/4 will satisfy both con- 
ditions and the radius of the background will be given by npbR2= 
N +  S(N), i.e., Rb~  (npb) 1/2(NI/2 + 1N1/4). 

Following the notations of I, we set u=  (npb) 1/2 [z[, v = (~Pb) 1/2 ]z'[, 
S =  (7~pb)  - 1 / 2  [ Z - - Z ' ] ,  and 

P2,Q)(T U, V, s ) = p 2 h N ( Z ,  Z ' )  ( 3 . 1 0 )  

With our assumptions and if we set N -  1 = n we have 

--hN(Z,Z')=exp(--lzI2--lz'12)K,,(zz'*)Kn(z*z ') (3.!1) 

where, setting w = zz'*, 
W l 

K.(w)= ~ ~ (3.12) 
/ = 0  

We write Eq. (3.12) in the following integral representations: 

K , , ( w )  = K (w) - t! 
/ = n +  1 

I[ 1 e w t " e  t = e w - - ~  dt 

- e" ' -  L,,(O, w) (3.12a) 

and 
oo 

K , ( w ) = - - e  wl dtt"e '=-L , (w ,m)  (3.12b) 
n! L,. 

respectively useful for [w[<n and [wt>n. We proceed with partial 
integrations of Eqs. (3.12a) and (3.12b), namely 

and 

1 W n + 1 e w ( 'v n 

Jo 
1 _  ttl l 

L n ( 0  , w )  = n !  ti - -  w gl! a t  (11 - -  t )  2 e 

1 W n + l  
Rn(O, w) (3.13a) 

n ! n - w  

Ln(w, ~ ) - 
l w n +  1 e w r az Yl 

n ! w - n  n! J~,. d t ~  t''e-~ 

1 W n + l  

= R,,(w, oo) (3.13b) 
Y/! W - -  Y/ 
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With the help of the above representations and asymptotic expansions, the 
function hu(Z , Z') will be described in the following situations: (a) both z 
and z' are in the interior of the circle of radius x/N; (b) one is in the 
interior and the other in the exterior; (c) both are in the exterior. 

If, for reasons to become clear later, we neglect the remainders 
R,(0, w) and Rn(w, oo), we obtain for the three situations considered above 

/ 
- h#l(z, z') ,,~ exp( - Iz l  ~ - Iz'l 2) ~exp(w) 

( 1 
x exp(w*) n! n - w * ]  

--h(bl(z Z' 2 2) N , , )~exp(-- lz]  - I z ' l  exp(w) 

1 wn+l~ 
n! 2-2--w/ 

1 wn+l~ I (W*) n+ l  

n! ~----w/ n! w*--n 

(3.14a) 

- - + c . c  

(3.14b) 

(3.14c) -h~)~exp( - l z l2-[z '12) (  1 ~.T )2 (w---~ n ) - -~  -- n) ww*(ww*)n)  

where c.c. means complex conjugate. 
Inspection of these equations reveals the existence of two distinct 

behaviors of hN(Z , Z') corresponding, respectively, to a bulk behavior and a 
surface behavior. The first is given by the product of the first two terms of 
Eq. (3.14a). We find the well-known formula for the infinite OCP at ~ = 2, 
namely, 

-- hbulk(z, Z') = exp( - I z  - z'l 2) (3.15) 

Following Eq. (3.10), we have 

T ~ b u l k /  ", P2,0 ts) = _p2 exp( -~pbs  2) (3.16) 

and according to Eqs. (3.6) (3.8) 

, 0bulk/S)2,(~)t = -A(s/2Rb) P~ exp(-~zpbs 2) (3.17) 

Following Eq. (3.3), we can calculate the bulk contribution to the partial 
second moment, namely 

bulk t , l 2fi~ S,3z/ ( s' ) Zll.Q)tsl ='~" 27rp h ds' ~ exp(-~zpbs '2) 

2 (l+z~pbs2)exp(--~pbs2) 1--O (3.18) 
-- 2r~ 
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We observe that, for g p b S 2 <  1, ~ll,(~l,~] ~ bulk [ o ~  (1/27t)' �89 2, whereas for 
,bulk (s) npbs 2 > 1, zn .Q saturates rapidly to 1/2zc. As expected, the bulk part of 

the second moment yields the Stillinger-Lovett value. 
The surface part of hu(z, z') is composed either of Eq. (3.14c) or of the 

second term of Eq. (3.14b) or its complex conjugate or of the fourth term 
of Eq. (3.14a), depending on the location of [zl and ]z'[ with respect to the 
circle of radius ~ .  Since these four parts are algebraically identical, they 
can be lumped together by analytic continuation, except at w = n, and we 
obtain 

hsurface / WW* ( WW* ),z 
- -"N ,z, z Z ) = e x p ( - l z l 2 - l z ' 1 2 ) l w _ n ! Z ( n  )2 (3.19) 

Equation (3.19) is valid for ]z] and ]z'] in the neighborhood of the circle of 

radius x/-N. Let us proceed with an analysis of Eq. (3.19). Its denominator 
can be written as follows: 

In --  W] 2 ~ F12 __ VIZZt* __ FIZ*Z ~ _~_ ZZ:CZ,Zr, 

= ( n - -  Izl2)(n-- Iz'[ 2 )+n  Iz--z'l 2 

= (n - xp~,u2)(n - xp~,v 2) + n'xpbs 2 (3.20) 

Thus, following Eq. (3.10), 

(~pbu2) n (~phv2) " 
__ p T, surfacet2,O ~b/, V, S) = pZexpE--~Pb(uZ+v2)]  n! n! 

(Tcp6) 4 //212 
• (n_~zpbu2)(n_rcpbv2)+nrcpbs2 (3.21) 

Using the Stirling formula n! ~ (2nn) 1/2 exp(n In n - n), we observe that the 
first three terms of Eq. (3.21) take the form 

1 
F~(u, v) = ~ exp(n - 7zpbu 2) exp(n - 7zpbv 2) (3.22) 

It is apparent that the above function is sharply peaked around rcpbu2= 
7zpbv2= n. For these particular values, we find 

n 2 1 

- -  PZ,Q)  2 \ T c P b /  \1"~Pl:,/ 2~n  

1 Pb 1 Pb 
- 2 ~  2 s2 - 2 ~  2 [r]2 (3.23) 
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Eqaation (3.23) displays a fundamental property of pf'~rface([r]), that it 
decays as !r[-2 for large [r[. The qualitative expectation that near the sur- 
face of the OCP perfect screening breaks down and that dipolar interaction 
dominates is thus demonstrated. At this point the fact that the remainders 
R~,(0, w) and R,,(w, 0o) have been neglected can be justified: the next 
integration by parts produces the term 

t.5\t + o R~ - n! 

For w = n e  ~o the correction to Eq. (3.23) becomes 

(pb/2x2sZ)(4/n)(1 - 2/rrpbs 2) 

which is indeed negligible for large n and for s > 0. 
We are ready to calculate the surface contribution to the partial 

second moment given by Eq. (3.9). Introducing the new variables ~, 0, 
and p through u=(n/zcpb)~/2(1 +~),  v=(n/rcpb)~/2(1 +0) ,  and [r[ = s =  
(n/rcpb) 1/2 p = Rp with 7zpbR 2 = n, expanding ln(1 + ~) = ~ - �89 + 0(43) and 
similarly for In(1 + 0), we find 

--Y2,@~ r, surface[ ):t~,O,p)=ph2 exp{ - 2 n [ ~  2 + 0 2 + 0 ( ~  3 ) + 0 ( 0 3 ) ]  }" (2~n) -~ 

(1 +~)~(1 + o )  ~ 
x [ 1 -  (1 + ~ ) 2 ] [ 1 -  (1 +q)2]  +p2 (3.25) 

For the volume element we find next 

2dudv 87~rt 2 p(l +~)(l +o)dpd~ do 
2~sds sin r o ~ -  (~pb) 2 {[p2--(q--~)2][(2+~+o)Z--p2]} 1/2 (3.26) 

For the partial second moment we find lastly, recalling that rcpbR ~ = M =  
N +  S(N),  that n = N -  1 and ~ = 2, 

11,Q = ~--v~- @ ' p '  d~do ~)(p') 

(1 + ~)3(1+o)  3 
X 

[p,2 _ (o - ~)2] 1/~ [(2 + ~ + 0) 2 -  p,2],/2 

p,2 
X 

[1 - (1 + ~)23 [1 - (1 + o )  2] +p ,2  

2 ( N - 1 ) e x p { - 2 ( N - 1 ) [ ~ 2 + 0 2 + O ( ~ 3 ) + O ( 0 3 ) ] }  (3.27) ) < -  
TO 
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At this point we note that thanks to the term p,2 in the numerator of the 
integrand, we can take the limit N--, oo under the integrals. This limit 
produces the product of Dirac distributions ~i(~.)~07)- Thus, with p =s/R 
varying from 0 to 2, we have, since N/M ~ 1, 

al.@ e --~Tf~dP'(4_p,2)l/2=--s (3.28) 

This is a new and exact result, which tells us how the surface contribution 
to the total susceptibility reaches the value 1/2re, which together with the 
bulk contribution of 1/27z yields the result of l/it obtained in I, Eq. (16). 
Equation (3.28) will be designated as the "arc sine" law. 

It remains to show that the interference terms not considered so far 
have no effect for large systems. They are the cross-terms of Eqs. (3.14a) 
and (3.14b), namely 

-- h~terf(z, Z') ~ e x p ( -  lzl 2 - tz'l 2 + w)l_L 7 g----~+'w--'--- ~ t- c.c 
W ~ - - f /  n '  

= e x p ( - I z l  2 -  Iz'12-+ - Izl Iz'l cos  0 ) - -  - -  
(Iz/ Iz'l n Izl Iz'l 

n! lzz'* -n l  

(3.29) 

2 COS 

(3.30) 

where 

q6(lzl, lz ' l ,  o, n ) =  - I z l  Iz'l sin O +  ( n +  1) 0 + arctg 
]zL ]z'l sin 0 

(3.31) 
Izl Iz'l cos  0 - n 

We observe that the amplitude of Eq. (3.30) is twice the square root of 
hbulk(z, Z') times hsurface( "N ~Z, Z') of Eqs. (3.15) and (3.19). Ignoring the rapidly 
oscillating phase factor in Eq. (3.30), we can give an upper bound estimate 
to the partial SM of the interference terms. Using the Stirling formula, we 
have, with Eq. (3.22), 

z i n t e r f g  -~ ~<~ ~ 2z fo 11"@tsl "~ ~ rcR-'--~ p~ ds' 

• s'3 fD 2 du dv (zpb) 2 uv 
O(s') sin IO[ [(n - ~pbu2)(n - ~pbv 2) + rlTzpj2] 1/2 

1 ~pbs2).F~/2(u, v) (3.32) • exp ( -- 
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Introducing again the variables p, ~, and t/ and symmetrizing the 
integration over p', we have that Eq. (3.32) becomes 

Linterf .~ 1 n f~o ~ , , e ~ - ~  do' Ip'l 3 

x fo ~/~ d~ (1 + r + n) 2 
@(Ip'l) [P'2--(tl--~)211/2[(2+~+q)2--p'211/2 

1 
X 

{[1 - (1 + ~)~] [1 - ( 1  +.)~3 +p'~} 

n ~ ( 1 ,~ ) 
x rc(2rcn)i/,------ ~ exp - ~ n p -  n~ 2 - nq 2 (3.33) 

It is apparent that the limit n --, oc produces the product of three Dirac dis- 
tributions 6(0) 6(4) 6(q); thus, 

)~interf I ~_~ jP (~(pt)= 0 Ip'l 
n , Q I n ~  _pap 4 _ p ,  2 

1! (3.34) 

For n large but finite it is easy to show from Eq. (3.33) that Z, 11,@~Pl~'interf/~ 
O(n 1/2). We are now confident that the partial second moment is 
additively made up of a bulk and a surface contribution and thus that the 
final result of this section reads, with Pb = P  the particle density and R b = R 
for macroscopic systems 

1 ( I r j )  (3.35) 1 1 (1 +~p  [rl2) exp(--~p Irl2)+~-Tarcsin \2R,  / Z l l 'Q( l r [ ) -  2rt 2re 

4. N U M E R I C A L  R E S U L T S  A N D  
M O N T E  C A R L O  S I M U L A T I O N S  

This section presents exact numerical results for the OCP on a disk for 
7 = 2 and some results obtained by Monte Carlo (MC) simulations for an 
OCP and a TCP for 7 = 2 and at other temperatures. 

Figure 1 shows the 1/r2(tzl, Iz't, O) dependence of the exact two-par- 
ticle correlation function h(z, z') defined by I, Eq. (12) divided by p~ for 
two different distances from the edge. The absolute values of z and z' are 
kept fixed and the angle 0 is varied from 0 to re. Since the figure represents 
- t z  - z ' l  2 h(z, z'), the plots are expected to be flat for large separations, as 
indicated by the analytical approximation [Eq.(3.23)]. Indeed, the 
function is completely flat even for short separations. This behavior 
remains qualitatively the same when both ]zf and fz'J are at larger distances 
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Fig. 1. (a) The 1/Ir[ 2 decay of the correlation function on the edge, [zl = ]z'l = x f N .  The 
function h([z[, [z'l, 0) is multiplied by the square of the distance I z -  z'[ 2. The amplitude of the 
correlation function (on the edge) is in good agreement with the asymptotic value of 2/~z given 
in Ref. 13 (Eq. 2.21). (b) The same plot as (a), except that Iz l=[z ' l=0 .95~/ -N.  The 
asymptotic value is given by ( 2 / ~ ) e x p ( -  2 .0 .95 )=  0.0952. 
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from the edge, but the amplitude is now much smaller. Even for small N, 
the amplitude of the function is very close to 2fie, the value of the infinite- 
system solution, which can be inferred from the result established by Jan- 
covici for the truncated pair correlation function of an OCP near a wall 
[Ref. 13, Eq. (2.21)] and which differs from Eq. (3.23) by a factor of 4. The 
difference between the two systems is that in I, Eq. (12) and in the 
simulations, we have strict neutrality and a strong influence of the edge, 
whereas in Eq. (3.11), which leads to Eq. (3.23) in the limit of an infinite 
system, the background has a positive excess charge and the particles can 
move beyond the radius (N/~pb) 1/2. The difference in the normalization of 
the respective truncated correlation functions accounts exactly for this fac- 
tor 4. 

In Eq. (2.28) we have defined a pair correlation function depending on 
the relative position vector r. Since this function is not naturally obtained 
in a computer simulation, we have used the radial pair correlation, which is 
the pair correlation function integrated over the angle, i.e., 

~2,@(Irl) = dO Irl f52.o(lrl, 0) (4.1) 

For a spherical geometry, this operation amounts to multiplying Eq. (2.28) 
by 2re Irl. 

Figure 2 shows this radial pair correlation function obtained from the 
exact two-point correlation function [I, Eq. (12)] with 44 particles. The 

0 5 10 'J-~b .Irl 

u 

--% 
(o2" 

Fig. 2. Radial pair correlation function for 7 = 2 and N = 44 obtained from the exact trun- 
cated two-body-correlation function of the model. 
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function starts at 0 and not at - 1 ,  as one would expect for the pair 
correlation function, because of the integration over the angle. Even at 
large distances, the function stays slightly negative because of the strong 
negative correlation near the surface. 

For  temperatures other than ~ = 2, we used MC simulations to deter- 
mine the truncated correlation functions. One of the reasons we finally 
chose MC simulations rather than molecular dynamics was the following, 
very annoying behavior of the OCP. The degree of freedom of the center of 
mass (which is also the electric moment) is coupled to the other degrees 
only via collisions of the particles with the wall. We have observed that the 
motion of the center of mass did not thermalize fast enough at low tem- 
perature, and therefore the time averages were not representative. How did 
we compute the radial pair correlation function ~2,Q(lr[)? This function is 
defined by 

~@oo d2x x + r) ~2,Q(Irl) = f Irl dO f~G(4r,) P2,@( x, 

- f  lrldO~ r d2xpl,Q(x)pl,Q(x+r) (4.2) 
~zRb @Q)(lr]) 

We have to compute in a first step the usual pair correlation function and 
then subtract the product of the densities. Since the truncated pair 
correlation function is the difference of two large functions, we need very 
high precision and therefore extremly good statistics in order to obtain a 
function with an error smaller than the function itself. This goal can of 
course not be achieved with reasonable computer time, but we have used a 
method that at least suppresses all systematic errors. When we calculate the 
convolution of the one-particle densities, we do not use in the integral a 
systematic sampling of the space, but we make a statistical approach. The 
idea basically consists in generating totally uncorrelated configurations 
with the same average density as the real system. The convolution of the 
densities is computed in exactly the same way as the real pair correlation 
function. This ensures that the result converges to the exact one for a long 
enough run. Still, we had to sample runs of almost one million moves per 
particle for 44 particles to obtain reasonably accurate results. 

Figure 3 represents ~2,Q)(Irl/Rb) of a system of 44 particles for 7 = 1.5 
and Fig. 4 represents the partial second moment for a system of 44 particles 
for 7 = 2. The smooth line is the exact solution, the noisy one is the result 
of the MC simulations. We encountered more and more difficulties when 
we increased the number of particles, especially at low temperature. For 
100 or more particles, the partial second moment had the correct behavior 
for short distances. At large separations, the noise level was so great that 
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the partial second moment reached a completely wrong value at 2R. 
However, since the MC and analytical results agree for 7 = 2 and for a 
small number of particles, we can assume that the MC results are also 
reliable at other temperatures and for other systems, provided that the 
statistics are good enough. 

Figure 5 represents the partial second moment of a subdomain of a 
system with 100 particles. It is obtained from the exact solution for ?, = 2, 
where one includes in the integral only particles inside a disk of radius ~R 
(0 < c~ ~< 1) and where the normalization is also the area of the subdomain. 
The radii are respectively 1.0R, 0.97R, 0.95R, and 0.9R. We notice that the 
surface contribution is restricted to a very thin layer. 

Figure 6 shows the radial pair correlation function for 44 particles for 
"/= 4, and Fig. 7 the partial second moment for 7 = 4. The curve confirms 
the "arc sine" behavior of the surface part. Note the hump in the radial 
correlation function and in the partial second moment. This hump is due to 
the presence of short-range order, which is known to set in at 7 = 2 and is 
amplified by the partial second moment. 

Since the OCP is in a certain sense a rather pathological system, we 
wanted to check if a more realistic Coulomb system with only pair interac- 
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Fig. 5. Partial second moment  of circular subdomains  with radii ~R for :~ = 1.0, 0.97, 0.95, 
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tions exhibits the same behavior as the OCP. Of particular interest is the 
question of whether the partial SM in a general Coulomb system displays a 
bulk part that saturates quickly plus a surface contribution that varies on 
the scale of the linear dimensions of the system. We have chosen for this 
purpose a TCP with regularized interactions between unlike charges. 

The potential is given by 

V+ + (Irl) -- g _(Irl) = _ q 2  l n ( l r l / o - )  (4.3) 

V+_(Ir[) - -  q2 M i d ~ a ) ;  Irl >1 ~r 

1 2 1 2 2 .  = --gq + 2q ( r /~)  , Irl <~ c, (4.4) 

The potential V+ (Irt) is the potential between a point charge and a 
charged disk. The radius ~ of the disk used as the scale length of the 
Coulomb potential is chosen to be 1/10 of the ionic radius a defined by 
Ira2 = P b  1. 

Because the interactions are completely symmetric, the truncated pair 
correlation function is equivalent to one-half the charge-charge correlation 
function, which is easily obtained in a computer simulation. The partial 
second moment displayed in Fig. 8, although very noisy, looks very similar 
to the one obtained on the OCP. While noisy, this curve is a convincing 
demonstration that there is a long-ranged "surface" contribution to the sus- 
ceptibility. 
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Fig.  8. Partial second moment of a TCP for ~2 = 2 and 2 x 50 particles. The noise in the 
charge-charge correlation function is strongly amplified by the factor [rL 2 in the integrand of 
the SM. Yet, the "arc sine" law is clearly visible. 
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5. A N I S O T R O P I C  G E O M E T R Y  

We study in this section the effect of a noncircular shape on the mean 
square fluctuations of the polarization of a system in the plasma state. 
Monte Carlo simulations for an OCP and also a TCP at high temperature, 
typically 7=2 ,  are compared to the result given by electrostatics. The 
shape of the simulation cells is chosen as an ellipse, since we can explicitly 
compute the components of the susceptibility tensor. 

We first compute the potential produced by a uniformly charged 
background lying on a ellipse, which we need for the MC simulations of 
the OCP. In a second step, we derive from this potential the depolarization 
tensor and the susceptibility tensor defined by Eq. (2.16). 

The potential of a homogeneously charged background of charge den- 
sity 1 is given by 

vb =fA d2y C(x, y) (5.1) 

where C(x, y) = - I n  I x -  y]. 
Following the procedure given in Ref. 11, p. 1202, we replace x by the 

complex variable z = x~ + ix2 and use the conformal mapping 

z = la ch w; w = # + i(0 (5.2) 

The variables # and q~ are the elliptic coordinates describing an ellipse with 
focus at +a/2  and - a / 2 ,  with major axis achk and minor axis ashk. 

The kernel C(z, z ' )  is rewritten in the coordinates #, ~0 and v, 0 and 
expanded in a Taylor series [Ref. 11, Eq. (10.1.32)] 

C(,~, q~; v, 0 ) = - ( v + l n 4 )  

+ - [ch n# cos n~o exp( -nv)  cos nO 
n = l  /~ 

+ sh n/~ sin no exp( -nv)  sin nO] (5.3) 

for # < v and conversely for v </~. 
The volume element dZy = �89 dz' dz'* becomes 

i dz' dz'* dw' dw'* = i a_~ 2 sh w' sh w'* dw' dw'* 
2 dw ' dw ' * 2 4 

a 2 

=-~- (ch 2 v -  cos 20) dv d o (5.4) 
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After integration over ~ and v (0 ~< # ~< k) we obtain the simple result 

V b ( # , q ) ) = - l r r a 2 ( c h 2 # + c o s 2 q o ) + ~ r r a 2 c h 2 # c o s 2 ~ o e  2k+const (5,5) 

Since we suspect that the result is of the form 

Vb(x) = - b l  x 2 - b2x~ (5.6) 

with x l  + ix2 = z, we introduce in Eq. (5.5) the coordinates #, cp and deter- 
mine the constant b~ and b2 by comparison. We obtain 

b 1 = �89 - e -2k) (5.7) 

b z = � 8 9  2k) (5.8) 

To check the result, we verify that 

- A  V b = 2(bl + b2) = 2zc 

In order to express the potential in terms of the dimensions L~ and L2, 
which are the length and the width of the ellipse, we use the relations 
L l = a c h k a n d L 2 = a s h k a n d  find 

bl = gL2/(LI  + L2); 

We now use this result to compute 
Eq. (2.8): 

b2 = ~L1/(L1 + L2) (5.9) 

the depolarization tensor given by 

1 ~2 V~(x)=lbi6,s_ 
T~ - 2~ ~X i OXj 7[ 

(5.10) 

and we obtain the components of the susceptibility tensor given by 
Eq. (2.16), 

l L l + L  2 1 L I + L  2 
ZH = - - ;  Z22 = (5.11) 

2~ Z 2 2~ LI 

Note that the ratio of the longitudinal to the transverse susceptibilities is 
given by 

x./z22 = C,/L2 (5.12) 

This relation has been examined with an OCP for 7 = 8 (intermediate 
temperature with few collisions with the wall) for a system of 100 particles. 
The results are averaged on 600,000 moves per particle. This large number 
of configurations is necessary in order to obtain reasonably good results. 
The results are reported in Table I. 
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Table I. The OCP for y = 8  and 600,000 Moves per Particle a 
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L2/LI Zll Z~hl Z22 Z th th th 22 ~(22/Z 11 Z2~/)~ 11 

1 0.98 1.0 0.98 1.00 1.00 1.0 
2 0.74 0.75 1.47 1.50 2.00 2.0 
3 0.65 0.66 1.96 2.00 3.01 3.0 

a)Ql and Z22 are the susceptibilities obtained by MC simulation, and g] h and Z th ~22 are the 
predictions of electrostatics in units of 1/n. 

Table II. The TCP for y = l . 0  and 300,000 Moves per Particle a 

L2/L1 Zn )~tlh X2: Z~ )~22/Z 11 .~ 22/zth thl 1 

1 0.84 1.0 0.842 1.0 1.00 1.00 
2 0.60 0.75 1.29 1.5 2.15 2.00 
3 0.523 0.66 1.75 2.0 3.34 3.0 

a Zu and Z22 are the susceptibilities obtained by MC simulation, and ;(]h 1 and ~th 22 are the 
predictions of electrostatics in units of 1/~. 

Table II shows the results for a TCP with twice 50 particles and with 
the regularized interaction [Eq. (4.4)]. The size of the parabolic core 
radius is one-tenth the mean ionic radius. We have obtained the results by 
averaging over 300,000 moves per particle. While some information about 
the shape of the system was explicitly contained in the Hamiltonian of the 
OCP, this system does not have any knowledge of the elliptic form besides 
that provided by the collisions of its particles with the wall. 

One can see from the tables that the susceptibilities of both the OCP 
and the TCP are all below the theoretical predictions. It is known already 
from simulations reported in I that the susceptibility has a strong size and 
N dependence, and we would have needed many more particles in order to 
avoid the saturation effect due to the finite size of the system. However, the 
ratio for the susceptibilities is in good agreement with the predictions of 
electrostatics. 

6. T H E  O C P  O N  A S T R I P  F O R  y = 2  

We consider here the strip geometry. The system is placed between a 
pair of infinite straight lines separated from each other by a width 2L. We 

822/46/3-4-13 
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call the directions parallel and perpendicular to the lines transverse and 
longitudinal, respectively. Furthermore, we assume that the lines bear no 
surface charge and that the system is surrounded by vacuum. 

Due to the anisotropy of the dielectric susceptibility tensor in this 
geometry we have to distinguish here the longitudinal component ZL from 
the transverse one(s) ZT. 

According to Eq. (2.11), the relations between the dielectric constant 
and the longitudinal component ZL and the transverse component(s) )~-r are 

e ~ = 1 -  ( v -  1) 2~rZL; v = 2 , 3  (6.1) 

e=l+(v-1)2rcZ-r; v = 2 , 3  (6.2) 

It follows from these two relations and from Eq. (2.16) that the values of 
the susceptibility in the plasma state are respectively given by 

ZL= 1 / [ ( v -  1) 2z]; v = 2 , 3  (6.3) 

)~v = oo (6.4) 

For the transverse susceptibility, the consistency between classical elec- 
trostatics and statistical mechanics is demonstrated by the results of 
Forrester and Smith (lz~ for the truncated two-particle correlation function 
of the 2D OCP for 7 = 2 in a strip geometry. Indeed, the latter have shown 
that an asymptotic expansion of the two-particle correlation function for 
two particles located at (Xl, 0) and (x2, y) for large y (y being the pair 
separation in the transverse direction) displays the polynomial decay first 
described by Jancovici (13~ in the case of a half-space, namely as - y - 2  when 
y tends to infinity. Therefore, it is obvious that the SM formula diverges in 
the thermodynamic limit. 

In the longitudinal case, it has been proved (~2) that the one- and two- 
particle correlation functions can be given explicitly for the 2D OCP for 
7 = 2. We recall that the result has been obtained by first considering an 
annulus of width 2L with inner and outer radii R -  L and R + L, respec- 
tively. In the limit R-+ oe with L fixed, the boundary becomes a pair of 
straight lines separated by a region of width 2L. Assuming the surface 
charge of the straight lines is zero, one can write the one-particle 
correlation function given in Ref. 12, 

Pl(X) = ph(x) (6.5) 

where 

2 r Kx)2] + (6.6) h ( x ) = ~  I dtexp[-(t+Y-- e x p [ - ( t - Y + K x )  2] 
~/= o ef t ( t+  Y ) - e r f ( t -  Y) 
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Pb is the charge density of the background, K =  (2rcpb) 1/2, Y=KL is a 
dimensionless parameter, and erf(s) is the error function defined by 

e r f ( s ) = ~ ; o d x e x p ( - x 2  ) (6.7) 

The two-particle correlation function for two particles sitting at (x~, 0) and 
(x2, y) may be written in the form 

p2(x1, x2, y)=p2{h(x1)h(x2)-exp(-zcpbr22)[h(l(xl + x2 + iy))] 2 } (6.8) 

where 

For convenience, we set 

and 

/,,122 = (X 1 __ X2)2 ~_ y2 

D(t, Y) = erf(t + Y) - erf(t - Y) 

(6.9) 

(6.I0) 

G =  (x, + xz)/2 (6.11) 

Using Eq. (6.5), Eq. (2.26) becomes 

dxxZh(x)+ Z dx, x 1 dx2x 2 dyp;(xl,x2, y) Z L = Z J  0 

(6.12) 

We call 7~. the first term on the rhs of Eq. (6.12) and Z 2 the second term. 
Using Eqs. (6.6) and (6.10), ;~ becomes 

1 2 P b (  Y dt 2L 
~L = ~  L-,) 0 D(t,Y) fo dxx2 

x {exp[- - ( t  + Y - K x )  2] + e x p [ - ( t - -  Y+Kx)2]} (6.13) 

which can also be written, using suitable changes of variables, 

2 l ~ Y  dt ~'+Y 
Z~-gB/2KLO0 D(I, Y) ot_ Y d~ [Y2q-(t-u)2]exp(-u2) (6.14) 
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The above expression can be calculated directly. We find 

1 1 (s dt {(t+ Y) e x p [ - ( t +  g)2] 
n 3/2 KL \ o D(t, Y) 

- ( t -  Y) e x p [ - ( t - -  y)2]} 

--2s D(t,dty) t{exp[-(t+ Y)2] -exp[ - ( t -  Y)a]}) (6.15) 

For Z~ the result is (cf. Appendix) 

1 8(KL) 2 

X~ - 2n 3 

2 1 fo r dt t{expE-( t+  y ) 2 ] _ e x p [ _ ( t _  y)2]} 
n3/2 KL D( t, Y) 

1 1 er dt 
n2 KL Jo D2(t ' y------~ {exp[- ( t  + y ) 2 ] - e x p E - ( t -  y)2]}2 (6.16) 

Gathering Eqs. (6.15) and (6.16), we obtain 

1 C(Y)  
ZL = X~ + Z ~ -  2n 2KL (6.17) 

where 

( l f o r d t  C(Y)=2 ~ D(t, Y-~ {(t+ Y) expE-(t+ Y)2] 

- ( t -  Y) e x p [ - ( t -  y)2]} 

l foY dt ) + ~  D2(t ' y--~-~ {expE-( t+  y)2] - e x p [ - ( t -  y)2] }2 (6.18) 

It is possible to find a simple expression for C(Y) by noting the following 
relations. From the definition [Eq. (6.10)] of D(t, Y) we have 

aD(t, Y) 
cgt 

92D(t, Y) 

2 
- - -  . ~  {exp [ -  (t + y)2] _ exp [ -  ( t -  y)2] } (6.19) 

4 
- - -  {(t+ Y) e x p [ - ( t +  Y)2] - ( t -  Y) e x p E - ( t -  y)2]} t?t2 

(6.20) 
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Thus 

C( Y) 2 oo D(t, Y) Ot 2 ~ Jo Dz(--~, Y) \ Ot 

[ l l aD(t, Y) ~ 
= 2 - 4r~ D(t, Y) 6 ~  

1 r[ dt ( }?D( t ,y ! )2+l fog  d t__(~D( t ,Y ! )  2 ] 
47~ ~o DZ(t, Y) \ Ot D2(t, Y) \ Ot 

= 1 1 - e x p ( - - 4 Y  2) (6.21) 
7c 3/2 erf(2 Y) 

As Y--, oo we find C(oo)=rc -3/2 instead of the value given in I and 
Zc = 1/2rr, which is the result given by Eq. (6.3) for v = 2. 

7. T H E  2D O C P  ON A S P H E R E  FOR y = 2  

We consider now the case of N identical particles of charge q confined 
at the surface of a sphere centered in O and of radius R. The interest in 
such a geometry resides in the fact that this system has no boundary and 
therefore that the value predicted by the SL sum rule should be recovered. 
This is effectively what happens, as we now prove. 

For such a system and for 7 = 2, it has been shown (14) that the n-par- 
ticle correlation functions p~)(1, 2 ..... n) can be given explicitly. In par- 
ticular, the one- and two-particle correlation functions are given by 

where 

p(ul)(1) = p (7.1) 

p(U2)(1, 2 ) =  /92g~)(1, 2) (7.2) 

p = N/4~zR 2 

is the number density, where 

and 

(7.3) 

g ~ ) ( 1 , 2 ) = l - ( l + c ~  N 1 
2 (7.4) 

OR~.ORj 
t) 0 = arccos R2 (7.5) 

is the angle between the two vectors pointing to the particles i and j located 
on the surface of the sphere. 
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Since Eq. (7.4) is rotational invariant, we can use the SM formula to 
compute the susceptibility. 

Choosing as polar axis for the second sphere the ORI direction and 
designating by (0, r its spherical coordinates, we have for Eq. (2.27) the 
convenient form 

~sphere 47~p 2R6 f:rt f: ( )N 1 
- reAl d r162  dO l+c os~2  sin30 (7.6) 

where the factor 4~ comes from the integration over the solid angle of the 
first sphere dr21 =sin 01 dO1 d~ol and where [A] = 4 ~ R  2. 

The integration can be performed easily. One obtains 

xsph . . . .  87~2 p2R6 f+'dx ( 1 -  x2)(1 + x) x - I  
2 N 4zcR 2 - 1 

1 N 2 
=2z~ ( N +  1) (N+ 2) (7.7) 

The asymptotic expansion of Eq. (7.7) yields 

2--~ 1 - N  + O(N-2)  (7.8) 

We observe that the electrostatic value is reached with a first-order 
correction proportional to the reciprocal of the area of the sphere, i.e., 
more rapidly than in the case of the disk, where the correction is O(R-~), 
or of the strip, where it is O(L-~). To give a numerical example, for the 
susceptibility to have 97 % of its infinite-system value, we need 694 par- 
ticles on a disk, but only 100 particles on a sphere. 

In the thermodynamic limit, Eq. (7.7) becomes 

lira )/sphere= 1/(2Zt) (7.9) N~c~3 
which is the value given by the SL sum rule. 

A P P E N D I X .  C A L C U L A T I O N  OF X~ 

By definition, 

f? ZL----~ dXl Xl x2 dx2 dy p~(x,, x2, y) 

We first integrate over y. The explicit expression for pr(x 1, X2, y) can be 
easily obtained using its definition and Eqs. (6.5), (6.8), (6.9), and (6.11). 
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We find 

D T ( x 1 ,  X 2, Y )  = D2(X1 ,  X2 ,  Y )  - -  P l ( X 1 )  IOI (X2)  

= - - p ~ e x p { - - ~ z p b [ ( x  I -- x2)2 + y 2 ]  } �9 Ih(G + ~'Y)11"2 (A.1) 

Further, using Eq. (6.6), we obtain for the integral over y 

f +oo T X 
d y P 2 (  1, x2, Y) 

co 

- 4 P - z ( f + _ f  

fo r d s d t  ( A C + A D + B C + B D ) )  (A.2) 
x D(s )  D ( t )  

where 
A = exp[ - (t + Y -  K G  - �89 2 ] 

B = e x p [ - ( t -  Y +  KG+TKiy)I �9 2] 

C = exp[ - (s + Y -  K G  + �89 2 ] 

D = exp[ - (s - Y +  K G  - �89 2 ] 

We shall call, respectively, TI, T2, T3, and T4 the four terms on the rhs of 
Eq. (A.2). Since the calculations are analogous for the four terms, we 
present here the calculation for T~ only. 

Noticing that the product A C  can be written as 

A C  = exp( _~2 _ f12) e x p [ i K ( t -  s) y + �89 2] 

with a = t + Y -  K G  and fi = s + Y -  KG,  we see that Tx becomes, after per- 
mutation of the integrals over y with the integrals over s and t, 

= -  [ Y  d s d t  e x p ( _ c d _  f12 ) T1 4p~lr e x p [ -  7 c p b ( x  1 - -  X2) 2] ")0 D(s )  D ( t )  

x dyexp - - ~ p b y 2 + i K ( t - - s )  y +  K2y 2 
--oo 

The integral over y can be simplified and we have 

+~ [ 1 2 2 7 
f-oo d y e x p _ - n p b y 2 + i K ( t - s ) y + ~ K y  J 

= d y e x p [ i K ( t - s )  y ]  = 2 n 6 [ K ( t - s ) ]  
--oo 

where 6 is the Dirac delta function. 
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Finally, using the property of the delta function that 6(Kx) = 6(x)/K, 
we obtain the following result: 

8o~ r fY at 
TI = - - - -expl - - -Tzpb(x ' - -  J0 D2(t) e x p [ - 2 ( t  + Y -  KG)2] (A.3) 

In the same way, we show that 

T4 8p~ r Y dt 
= -  K exp[--~pb(Xl--x2)Z] Jo D---~ e x p [ - z ( t - Y + K G ) 2 ]  (a.4) 

whereas 

T 2 = T 3 = 0 (A.5) 

The fact that T2 and T 3 vanish results from the appearance in these two 
expressions of a term in 6(t +s )  and not 6 ( t - s )  as before. Now, because 
s e  [0, Y] and te  [0, Y] with Y>0,  we see tat the effect of 6( t+s)  is to 
cancel the integration over s and t. 

Then it follows from Eqs. (A.3) (A.5) that the integral over y of the 
truncated two-point distribution function is given by 

f 
+ v o  

o o  

dy p2(xl, x2, y) 

dt 
- K [30 D2(t) e x p [ - ~ r p b ( x l - x 2 ) 2 - z ( t +  Y - K G ) 2 ]  

Io ~ dt } + D--~  e x p [ - ~ p b ( x l -  x2)2-  2(t - Y + K G )  2] (A.6) 

Thus, using Eq. (A.6), one can write Z 2 as 

Z2 _ --8p~ / ~ Y dt 
L KL Uo D ~  e x p [ - 2 ( t +  y)2] 

x d x x e x p [ - K 2 x 2 + 2 K ( t +  Y ) x ]  

f]d' + ~ e x p [ - 2 ( t -  y)2] 

x d x x e x p [ - K 2 x 2 - 2 K ( t  - Y ) x ]  (A.7) 
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The two integrals over x can be easily calculated using suitable changes of 
variables, Eqs. (6.7) and (6.10). Then Eq. (A.7) becomes 

1 8 ( x L )  2 
)~2 _ 2~ 3 

2 1 f Y dt t { e x p [ - ( t + Y ) 2 ] - e x p [ - ( t - y ) 2 ] }  
7I "3/2 KL o D(t)  

1 1 [r  dt 
rc2KLJ ~ D2(t ) { e x p [ - ( t + Y ) 2 ] - e x p [ - ( t - Y ) 2 ] } 2  (A.8) 
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